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Abstract: 

 

Numerical Methods for the Determination of Mixing 

Rayleigh-Taylor mixing rate is studied through the front tracking simulation; the 

result shows that the acceleration rate falls within the range of experiments. The front 

tracking method prevent interfacial mass diffusion. An analysis is presented to 

support the assertion that the lower acceleration rate found in untracked simulations is 

caused, at least to a large extent, by a reduced buoyancy force due to numerical mass 

diffusion across the interface. Quantitative evidence includes results from a time 

dependent Atwood number analysis of the diffusive simulation, which yields a 

renormalized mixing rate coefficient for the diffusive simulation in agreement with 

experiment. The Richtmyer-Meshkov instability is also studied through the front 

tracking method in spherical geometry. The growth rate of fingers at an unstable shell 

driven by an imploding spherical shock is studied through simulations; a qualitative 

understanding of this system has been achieved. 

 

Keyword: Front Tracking, Rayleigh-Taylor instability, Richtmyer-Meshkov 

instability, numerical diffusion.  

 
 

 

 

 

 

 



 

1. Introduction 

 

Since Read and Youngs [12,14] published the first experimental study of Rayleigh-

Taylor instability with a randomly perturbed fluid interface, attention has been drawn 

to the non-dimensional acceleration rate of the bubble envelope. Assume that two 

fluids are separated by a randomly perturbed interface and that the gravitational field 

points from the heavy fluid Hρ  to the light fluid Lρ . Read and Youngs confirmed the 

Sharp-Wheeler theoretical prediction  [13] that the average bubble front moves with 

acceleration scaling 

2)( Agtth α=                                                                                                          [1] 

where  is the height of the bubble envelope, h )/()( LHLHA ρρρρ +−=  is the 

Atwood number, g is the gravity and t  is time. Read and Youngs show that the 

acceleration rate α  is almost a constant, with 077.0063.0 −≈α  in 3-D experiments. 

The experiments have been repeated by various authors with different apparatus, and 

similar values of α  have been obtained; we mention the experiments of Dimonte and 

Schneider [4,5,6], giving 01.005.0 ±=α . The theoretically determined 

value, 0605.0 −≈ .0α , is obtained from a bubble merger renormalization group 

model. See [3] and references cited there. Computation of the center of mass of the 

mixing zone introduces a coupling between its two edges. Therefore, a 

characterization of the center of mass (nearly stationary for 8.0≤A , for example) 

determines the total mixing zone size in terms of α  alone [1,2]. 

 

The coefficient α  is thus important. It characterizes the size of the mixing zone, and 

thus largely determines the amount of material which is mixed. It has been reported 



by experimentalists as being approximately universal, in the sense that it is nearly 

independent of the random initial conditions of an experiment. 

 

Researchers in several laboratories have tried to reproduce the Sharp-Wheeler 

theoretical scaling law with the experimental value for α  through numerical 

simulation. Most researchers report a time dependent, decreasing value for α , 

ranging from 0.015 to 0.03. 

 

These simulations are from computational codes using numerical schemes with 

interfacial mass diffusion. We have compared numerical simulations using a high 

resolution front tracking code FronTier with zero interfacial mass diffusion to our 

own simulations using an untracked TVD-level set code with interfacial mass 

diffusion similar to the others. We also introduce an analytic study of the effects of 

mass diffusion on buoyancy reduction and we predict the numerically observed 

reduction in α  for untracked simulations. Our main result is that all values of α  

(theory, experiment, simulation) are consistent if the diffusive calculation of α  is 

renormalized to account for mass diffusion. 

 

We also performed simulations of the Richtmyer-Meshkov instability in spherical 

geometry using a 2-D cylindrical front tracking code. In addition to the usual 

difficulties for RM instability in planar geometry, spherical geometry complicates the 

RM instability due to the curved geometry in three dimensions. In order to achieve a 

stable spike and bubble velocity, we used the following methods. For the boundary 

conditions, we use a reflecting boundary condition at 0min >= rr , and Dirichlet flow 

through conditions on the other three boundaries. The idea of a flow through 



boundary condition can be briefly described as follows. In order to update the 

boundary state, we imagine there exists a far field state which is defined by the 

extrapolation of the states near the boundary point. Then we solve the Riemann 

problem using the interior state near the boundary and the extrapolated far field state 

and retain only the incoming waves. A flow through boundary is thus time-dependent. 

It is equivalent to an open boundary and an infinitely large domain. All waves will 

propagate out of the domain and no boundary signal will be reflected back at least 

theoretically. 

 

2. Diffusive and Nondiffusive Simulations 

 

An earlier comparison shows that FronTier simulations produce values for α  close to 

agreement with experiment while untracked TVD simulations produce low values for 

α [8]. These comparisons were limited in the simulation time and in the penetration 

depth of mixing achieved. Here we extend the comparison to a later time, comparable 

to most other simulations. Fig.1 shows the evolution of the fluid interface in the 

FronTier simulation. The color coding displays the height through the mixing zone, 

and the cut plane near the bubble surface at the top of the right frame shows the 

location of the 5% volume fraction contour for the light fluid. Note that there are a 

number of light fluid bubbles at the later time. The dynamics is multimode, not 

dominated by a single large space filling bubble up to this time. Such a large bubble 

would indicate the end of any possible self similar flow regime, as the acceleration 

scaling depends upon a continued growth in the transverse scale of the mixing 

structures. We expand on this idea. The dynamics of continued acceleration of the 

mixing zone edge, as expressed in the  scaling in Eq. 1, depends on a continued 2t



growth of  the large scale structures (the bubbles). See for example [3,13].  Bubbles 

grow through a process of bubble competition and merger. Thus the t  scaling and 

the determination of 

2

α  requires a simulation which is still in the multimode regime, 

where bubble competition and merger can occur. 

 

The t = 0 interface is constructed out of Fourier modes with random amplitudes and 

frequencies in the range of 8 to 16 modes per computational domain width. See [8] for 

further information concerning these simulations. The 822 ××  computational domain 

used here allows computationally efficient late time, deep penetration simulations. 

Within this computational aspect ratio, the Fourier mode numbers represent a balance 

between the conflicting requirements of spatial resolution, favoring low numbers of 

modes, and late time statistical validity, favoring large numbers of modes. Except as 

noted, the simulations used a128 grid. Our simulations, thus balanced, have 

about 12  initial bubbles and a  grid resolution of about ten cells in each 

dimension per initial bubble. The final time considered here has about five bubbles 

5122 ×

1442 =

(see Figure 1). 

[Figure 1 goes here] 

 

A comparison of the mixing rates for the two simulations is shown in Figure 2 (left), 

plotting bubble height h vs. . FronTier has a distinctly higher growth rate than 

does the interface mass diffusive TVD simulation. The value of h(t) is the difference 

between the t=0 bubble height and the time t bubble height. The latter quantity is 

defined in terms of a 1% volume fraction, i.e., the greatest height at which the 

2Agt



fluid is 99% heavy and 1% light according to the front tracking front or the  TVD 

level set. This definition is somewhat unstable statistically, and a few spurious 

oscillations associated with the definition were removed in the plots of Figure 2. 

 

[Figure 2 goes here] 

 

Mass diffusion is a common feature of most untracked simulation codes. Due to the 

interpolation constraint, numerical schemes (finite difference, finite volume) can have 

only first order accuracy in their spatial derivatives near a discontinuity. For a contact 

discontinuity, the corresponding characteristic is linear for the wave equation of the 

Riemann invariant 

,0=
∂
∂

+
∂
∂

x
wu

t
w                where ,2c

Pw −= ρ                                               [2] 

and so the truncation error will spread to the interior region. Assuming that a finite 

difference scheme is second order in time and first order in space at a contact 

discontinuity, we have the equivalent equation 

xxxt xwuww ∆=+
2
1                                                                                      [3] 

so that the width  of the numerically diffused density profile satisfies L∆ xtL ∆∆ ~ . 

 

In order to understand the difference between the two simulations, we compare the 

cross sectional density plots in a series of horizontal slices from the bubble (upper) 

portion of the mixing region. Figure 3 shows the cross sectional density plots in these 

simulations. Observe that there is a substantial smearing-out of the density across the 

boundary between the two fluids in the untracked TVD simulation, while the 

FronTier simulation maintains a sharp boundary with a discontinuous density profile 



throughout the simulation. As a further difference, we note the fine scale structure 

size in the FronTier simulation in comparison to the TVD simulation. 

 

We compute an effective Atwood number A(t) as a function of time for the TVD 

simulations. This is determined from the highest and lowest densities in a horizontal 

slice, with the resulting time and space dependent Atwood number averaged over 

heights in the upper third of the mixing zone at a fixed time to get an Atwood number 

dependent on time alone. In Figure 4, we plot A(t) vs. t for three simulations (fine and 

coarse grid TVD and fine grid FronTier). The time dependence of A(t) in the 

FronTier simulation is caused purely by (small) compressibility effects. For the mass 

diffusive TVD simulation, the initial density contrast, A(t = 0) = 0.5, is almost 

completely washed out; the earliest time displayed shows A(t = 2) ≈  0.15. As new 

pure (heavy and light) fluid is injected into the mixing region, the effective Atwood 

number increases, but it is still reduced to about A ≈  0.3 on a time averaged basis, or 

nearly a 50% reduction relative to its initial value. 

 

To compensate for the time dependent Atwood number A(t), we define an effective 

alpha,  (see Figure 2, right). Specifically, ∫∫≈ gdsdtsAheff )(2/α α or effα  is defined 

here as the slope of the straight line joining the beginning and end of the h(t) curve in 

Figure 2. This definition, although somewhat arbitrary, is conventional, and thus 

allows comparison to the results of others. We observe an improved comparison 

between FronTier and TVD and between TVD and experiment. Note that effα  lies 

within the range of experimental values; see Table 1. On this basis, we can state that 

the diffusive buoyancy renormalization of α  is capable of resolving existing 



discrepancies among simulations, between diffusive simulations and nondiffusive 

experiments, and with theory. 

[Table 1 goes here] 

[Figure 3 goes here] 

[Figure 4 goes here] 

 

3. Diffusion Induced Buoyancy Reduction 

 

The reduced mixing rate due to unphysical numerical diffusion can be understood 

from Figure 5. The left frame represents an immiscible bubble of radius r. The central 

and  the right frame assume that this bubble is smeared out numerically to a radius R 

while the total mass inside the sphere of radius R is conserved. The buoyancy forces 

grff LH )(
3

4 3
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−==                                                                 [4] 

for the bubbles in frames (a) and (c) are the same. However, due to the difference 

between the mass in the nondiffused bubble (a) and the diffused bubble (c), the two 

acceleration rates 
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are different. 

 

As a result of the mass diffusion, the buoyancy force is distributed to a larger amount 

of mass, thus reducing the acceleration of the bubble. 

[Figure 5 goes here] 

 



4. Richtmyer-Meshkov Instability 

 

We have performed verification and validation studies for axisymmetric simulations 

using FronTier. The validation was through comparison tolaser driven hemispherical 

targets [7], and will not be repeated here. In Fig. 6, we present the results of a mesh 

refinement study for an axisymmetrically perturbed spherical Richtmyer-Meshkov 

problem, comparing the growth rates as a function of time for a 200200×  and a 

 mesh. The influence of the symmetry axis (the ``North Pole'' effect) on the 

statistical characterization of the instability evolution was studied [9,10,11], with the 

main conclusions that (1) the effect was a real consequence of axisymmetrically 

perturbed flows, i.e. it was not due to numerical effects, (2)  it was independent of 

spherical flow geometry, and arises in cylindrically shaped flows, (3) that the effect 

occurs late in time and for spherical flows, is pronounced after reshock, and (4) that 

the effect is not eliminated through use of spherical harmonic (Legendre polynomial) 

perturbations. 

400400×

 

We present in Fig.7 the results of a strong shock scaling law analysis of the mixing 

zone growth rate for a spherically perturbed Richtmyer-Meshkov problem. The 

perturbed spherical surface separates a heavy gas (on the interior) from a light gas (on 

the exterior), with the initial shock location in the heavy fluid, facing outwards 

(explosion). Following [15]. where a similar scaling law was introduced for 

cylindrical implosions, we scale the velocity and times by the incident shock Mach 

number M, introducing a scaled velocity v  and time . The results of 

the scaling show a very close near identity of growth rate curves, which is remarkable 

Mv /' = Mtt ='



in view of the large amount of structure in the curves themselves. Again the 

configuration is heavy exploding light. 

 

[Figure 6 goes here] 

[Figure 7 goes here] 

 

5. Conclusion 

 

We present a FronTier simulation run to late time and deep penetration. The 

simulation is terminated while still in a multimode regime. It has no interfacial mass 

diffusion, and the overall bubble mixing rate lies within the experimental range.  We 

recalibrate the buoyancy force for mass diffusive TVD simulations, and obtain a 

renormalized effα which is also in agreement with experiment. On this basis, the 

nondiffusive simulation and the theory of mass diffused buoyancy reduction presented 

here are capable of resolving the principal differences between simulation and 

experiment for Rayleigh-Taylor mixing. Our results confirm the earlier agreement 

between theory and experiment [3]. Finally, we observe that our results open a door to 

further research, and do not close inquiry related to the determination of the mixing 

rate, as the uncertainties in the experimental, theoretical and simulation determination 

of α  deserve further investigation. Concerning simulation, which is the main thrust of 

this paper, we mention the importance of improved resolution. The needs for 

resolution are numerical accuracy, governed by mesh cells per bubble, statistical 

accuracy, governed by the number of bubbles, especially at the end of the simulation, 

and convergence to self similar flow, governed by the length of time of the 

simulation. 
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Table 1.Values of α  determined from experiment, theory, and simulation 

Method α  Reference 

Experiment 0.05-0.077 [12,14,4,5,6] 

Theory 0.05-0.06   [3] 

FronTier simulation 

(unrenormalized) 0.07 This paper (Fig. 2 Left) ref 8 

FronTier simulation 

(renormalized) 0.07 This paper (Fig. 2 Right) 

TVD simulation  

(unrenormalized) 0.035 This paper (Fig. 2 Left) 

TVD simulation 

(renormalized) 0.06 This paper (Fig. 2 Right) 

 

All values are consistent except the unrenormalized TVD value (with α  determined from a time 

independent t = 0 Atwood number). 

 

 

 

 

 

 

 

 



FIGURE CAPTIONS 

Fig.1.     Front plot for a  FronTier simulation of RT mixing, with A = 0.5. Left frame: 

early time. Right frame: late time. Color coding represents vertical height. The initial 

mean height of the interface is 4, and the height scale on the color bar applies only to 

the later time. 

 

Fig.2.     Mixing growth comparison of a FronTier (nondiffusive) with a TVD 

(diffusive) simulation. For the TVD simulation, two grid levels are shown, the coarser 

being . In all cases, h is the height of the 1% volume fraction contour, and 

the initial mean height of the interface is 4. Left: h vs.  for FronTier and 

TVD. Right: h vs.  for FronTier and TVD. The solid line represents 

the FronTier simulation, the dashed line is the finer grid TVD simulation and the 

dotted line is the coarser grid TVD simulation. 

128642 ×

2)0( gttA =

10

1

0
)(2 gdsdssA

t s

∫ ∫

 

Fig.3.      Cross sectional plots showing density on a common rainbow color scale. 

The pure light fluid is colored blue and the pure heavy fluid is red. Yellow and green 

represent various levels of microscopic mixing. The ratio of extreme density values is 

3.3:1. The right frames show a higher slice in the z direction. Top:  FronTier, bottom: 

TVD. The simulations are shown at comparable penetration distances, but at different 

times (  for FronTier,  for TVD). It is evident that the density 

contrast for the TVD simulation has been reduced by about 50% due to mass 

diffusion. See also Fig.4.  

232 =Agt 662 =Agt

 



Fig.4.     Time dependent A (Atwood number) for fine grid FronTier, fine grid TVD, 

and coarse grid  TVD. At time t = 0, all three simulations have A( t = 0) = 

0.5. This plot displays the reduced buoyancy of the diffusive TVD simulations as a 

function of time. 

128642 ×

 

Fig.5.       Left: Unmixed bubble of light fluid. Center: Unmixed bubble and heavy 

fluid mass which will be mixed with it. Right: Mixed bubble. 

 

Fig. 6.      Convergence under mesh refinement is demonstrated for the rate of growth 

of the mixing layer for an axisymmetrically perturbed spherical Richtmyer-Meshkov 

instability simulation, in the case of heavy fluid exploding light. 

 

Fig. 7.      Asyptotic scaling in the strong shock limit is demonstrated for the same 

problem as presented in Fig.6. Scaled results for incident shock Mach numbers 10 to 

200 are virtually identical.    

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Figure 1.  

 

 

 

 

 

 



 

 

 

 

 

 

Figure 2 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Figure 3.  

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Figure 4.  

 

 

 

 

 

 

 

 

 



 

 

 

 

Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 6. 

 

 

 

 

 

 

 

 



 

 

Figure 7.   

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 


